Copied to
clipboard

G = C42⋊D9order 288 = 25·32

The semidirect product of C42 and D9 acting via D9/C3=S3

non-abelian, soluble, monomial

Aliases: C42⋊D9, (C4×C12).S3, C42⋊C92C2, (C2×C6).2S4, C3.(C42⋊S3), C22.(C3.S4), SmallGroup(288,67)

Series: Derived Chief Lower central Upper central

C1C42C42⋊C9 — C42⋊D9
C1C22C42C4×C12C42⋊C9 — C42⋊D9
C42⋊C9 — C42⋊D9
C1

Generators and relations for C42⋊D9
 G = < a,b,c,d | a4=b4=c9=d2=1, ab=ba, cac-1=dbd=a-1b-1, ad=da, cbc-1=a, dcd=c-1 >

3C2
36C2
3C4
3C4
18C22
18C4
3C6
12S3
16C9
3C2×C4
9D4
9Q8
18C2×C4
18C8
18D4
3C12
3C12
6D6
6Dic3
16D9
9M4(2)
9C4○D4
3Dic6
3D12
3C2×C12
6C3⋊C8
6C3⋊D4
6C4×S3
4C3.A4
9C4≀C2
3C4.Dic3
3C4○D12
4C3.S4
3C424S3

Character table of C42⋊D9

 class 12A2B34A4B4C4D68A8B9A9B9C12A12B12C12D
 size 1336233636636363232326666
ρ1111111111111111111    trivial
ρ211-11111-11-1-11111111    linear of order 2
ρ322022220200-1-1-12222    orthogonal lifted from S3
ρ4220-12220-100ζ989ζ9792ζ9594-1-1-1-1    orthogonal lifted from D9
ρ5220-12220-100ζ9594ζ989ζ9792-1-1-1-1    orthogonal lifted from D9
ρ6220-12220-100ζ9792ζ9594ζ989-1-1-1-1    orthogonal lifted from D9
ρ733-13-1-1-1-1311000-1-1-1-1    orthogonal lifted from S4
ρ83313-1-1-113-1-1000-1-1-1-1    orthogonal lifted from S4
ρ93-1-13-1-2i-1+2i11-1i-i000-1-2i11-1+2i    complex lifted from C42⋊S3
ρ103-113-1+2i-1-2i1-1-1i-i000-1+2i11-1-2i    complex lifted from C42⋊S3
ρ113-113-1-2i-1+2i1-1-1-ii000-1-2i11-1+2i    complex lifted from C42⋊S3
ρ123-1-13-1+2i-1-2i11-1-ii000-1+2i11-1-2i    complex lifted from C42⋊S3
ρ136-20622-20-2000002-2-22    orthogonal lifted from C42⋊S3
ρ14660-3-2-2-20-3000001111    orthogonal lifted from C3.S4
ρ156-20-322-20100000-11+231-23-1    orthogonal faithful
ρ166-20-322-20100000-11-231+23-1    orthogonal faithful
ρ176-20-3-2-4i-2+4i201000001+2i-1-11-2i    complex faithful
ρ186-20-3-2+4i-2-4i201000001-2i-1-11+2i    complex faithful

Smallest permutation representation of C42⋊D9
On 36 points
Generators in S36
(1 34 19 10)(3 12 21 36)(4 28 22 13)(6 15 24 30)(7 31 25 16)(9 18 27 33)
(1 10 19 34)(2 35 20 11)(4 13 22 28)(5 29 23 14)(7 16 25 31)(8 32 26 17)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 36)(8 35)(9 34)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)

G:=sub<Sym(36)| (1,34,19,10)(3,12,21,36)(4,28,22,13)(6,15,24,30)(7,31,25,16)(9,18,27,33), (1,10,19,34)(2,35,20,11)(4,13,22,28)(5,29,23,14)(7,16,25,31)(8,32,26,17), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,36)(8,35)(9,34)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)>;

G:=Group( (1,34,19,10)(3,12,21,36)(4,28,22,13)(6,15,24,30)(7,31,25,16)(9,18,27,33), (1,10,19,34)(2,35,20,11)(4,13,22,28)(5,29,23,14)(7,16,25,31)(8,32,26,17), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,36)(8,35)(9,34)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19) );

G=PermutationGroup([[(1,34,19,10),(3,12,21,36),(4,28,22,13),(6,15,24,30),(7,31,25,16),(9,18,27,33)], [(1,10,19,34),(2,35,20,11),(4,13,22,28),(5,29,23,14),(7,16,25,31),(8,32,26,17)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,36),(8,35),(9,34),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19)]])

Matrix representation of C42⋊D9 in GL5(𝔽73)

10000
01000
002700
000720
000027
,
10000
01000
007200
000270
000027
,
2870000
331000
000130
000072
002800
,
2870000
4245000
000013
000720
004500

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,27,0,0,0,0,0,72,0,0,0,0,0,27],[1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,27,0,0,0,0,0,27],[28,3,0,0,0,70,31,0,0,0,0,0,0,0,28,0,0,13,0,0,0,0,0,72,0],[28,42,0,0,0,70,45,0,0,0,0,0,0,0,45,0,0,0,72,0,0,0,13,0,0] >;

C42⋊D9 in GAP, Magma, Sage, TeX

C_4^2\rtimes D_9
% in TeX

G:=Group("C4^2:D9");
// GroupNames label

G:=SmallGroup(288,67);
// by ID

G=gap.SmallGroup(288,67);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,141,92,254,1011,514,360,634,3476,102,9077,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^9=d^2=1,a*b=b*a,c*a*c^-1=d*b*d=a^-1*b^-1,a*d=d*a,c*b*c^-1=a,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C42⋊D9 in TeX
Character table of C42⋊D9 in TeX

׿
×
𝔽