non-abelian, soluble, monomial
Aliases: C42⋊D9, (C4×C12).S3, C42⋊C9⋊2C2, (C2×C6).2S4, C3.(C42⋊S3), C22.(C3.S4), SmallGroup(288,67)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C42 — C42⋊C9 — C42⋊D9 |
C1 — C22 — C42 — C4×C12 — C42⋊C9 — C42⋊D9 |
C42⋊C9 — C42⋊D9 |
Generators and relations for C42⋊D9
G = < a,b,c,d | a4=b4=c9=d2=1, ab=ba, cac-1=dbd=a-1b-1, ad=da, cbc-1=a, dcd=c-1 >
Character table of C42⋊D9
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 4D | 6 | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 12C | 12D | |
size | 1 | 3 | 36 | 2 | 3 | 3 | 6 | 36 | 6 | 36 | 36 | 32 | 32 | 32 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -1 | -1 | -1 | -1 | orthogonal lifted from D9 |
ρ5 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -1 | -1 | -1 | -1 | orthogonal lifted from D9 |
ρ6 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -1 | -1 | -1 | -1 | orthogonal lifted from D9 |
ρ7 | 3 | 3 | -1 | 3 | -1 | -1 | -1 | -1 | 3 | 1 | 1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ8 | 3 | 3 | 1 | 3 | -1 | -1 | -1 | 1 | 3 | -1 | -1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ9 | 3 | -1 | -1 | 3 | -1-2i | -1+2i | 1 | 1 | -1 | i | -i | 0 | 0 | 0 | -1-2i | 1 | 1 | -1+2i | complex lifted from C42⋊S3 |
ρ10 | 3 | -1 | 1 | 3 | -1+2i | -1-2i | 1 | -1 | -1 | i | -i | 0 | 0 | 0 | -1+2i | 1 | 1 | -1-2i | complex lifted from C42⋊S3 |
ρ11 | 3 | -1 | 1 | 3 | -1-2i | -1+2i | 1 | -1 | -1 | -i | i | 0 | 0 | 0 | -1-2i | 1 | 1 | -1+2i | complex lifted from C42⋊S3 |
ρ12 | 3 | -1 | -1 | 3 | -1+2i | -1-2i | 1 | 1 | -1 | -i | i | 0 | 0 | 0 | -1+2i | 1 | 1 | -1-2i | complex lifted from C42⋊S3 |
ρ13 | 6 | -2 | 0 | 6 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | orthogonal lifted from C42⋊S3 |
ρ14 | 6 | 6 | 0 | -3 | -2 | -2 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from C3.S4 |
ρ15 | 6 | -2 | 0 | -3 | 2 | 2 | -2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | -1 | 1+2√3 | 1-2√3 | -1 | orthogonal faithful |
ρ16 | 6 | -2 | 0 | -3 | 2 | 2 | -2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | -1 | 1-2√3 | 1+2√3 | -1 | orthogonal faithful |
ρ17 | 6 | -2 | 0 | -3 | -2-4i | -2+4i | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1+2i | -1 | -1 | 1-2i | complex faithful |
ρ18 | 6 | -2 | 0 | -3 | -2+4i | -2-4i | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1-2i | -1 | -1 | 1+2i | complex faithful |
(1 34 19 10)(3 12 21 36)(4 28 22 13)(6 15 24 30)(7 31 25 16)(9 18 27 33)
(1 10 19 34)(2 35 20 11)(4 13 22 28)(5 29 23 14)(7 16 25 31)(8 32 26 17)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 36)(8 35)(9 34)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)
G:=sub<Sym(36)| (1,34,19,10)(3,12,21,36)(4,28,22,13)(6,15,24,30)(7,31,25,16)(9,18,27,33), (1,10,19,34)(2,35,20,11)(4,13,22,28)(5,29,23,14)(7,16,25,31)(8,32,26,17), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,36)(8,35)(9,34)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)>;
G:=Group( (1,34,19,10)(3,12,21,36)(4,28,22,13)(6,15,24,30)(7,31,25,16)(9,18,27,33), (1,10,19,34)(2,35,20,11)(4,13,22,28)(5,29,23,14)(7,16,25,31)(8,32,26,17), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,36)(8,35)(9,34)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19) );
G=PermutationGroup([[(1,34,19,10),(3,12,21,36),(4,28,22,13),(6,15,24,30),(7,31,25,16),(9,18,27,33)], [(1,10,19,34),(2,35,20,11),(4,13,22,28),(5,29,23,14),(7,16,25,31),(8,32,26,17)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,36),(8,35),(9,34),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19)]])
Matrix representation of C42⋊D9 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 27 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 27 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 27 | 0 |
0 | 0 | 0 | 0 | 27 |
28 | 70 | 0 | 0 | 0 |
3 | 31 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 72 |
0 | 0 | 28 | 0 | 0 |
28 | 70 | 0 | 0 | 0 |
42 | 45 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 45 | 0 | 0 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,27,0,0,0,0,0,72,0,0,0,0,0,27],[1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,27,0,0,0,0,0,27],[28,3,0,0,0,70,31,0,0,0,0,0,0,0,28,0,0,13,0,0,0,0,0,72,0],[28,42,0,0,0,70,45,0,0,0,0,0,0,0,45,0,0,0,72,0,0,0,13,0,0] >;
C42⋊D9 in GAP, Magma, Sage, TeX
C_4^2\rtimes D_9
% in TeX
G:=Group("C4^2:D9");
// GroupNames label
G:=SmallGroup(288,67);
// by ID
G=gap.SmallGroup(288,67);
# by ID
G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,141,92,254,1011,514,360,634,3476,102,9077,3036,5305]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^9=d^2=1,a*b=b*a,c*a*c^-1=d*b*d=a^-1*b^-1,a*d=d*a,c*b*c^-1=a,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C42⋊D9 in TeX
Character table of C42⋊D9 in TeX